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Abstract. We investigate the physical properties of two coupled chains of electrons, with a nearly half-filled
band, as a function of the interchain hopping t⊥ and the doping. We show that upon doping, the system
undergoes a metal-insulator transition well described by a commensurate-incommensurate transition. By
using bosonization and renormalization we determine the full phase diagram of the system, and the physical
quantities such as the charge gap. In the commensurate phase two different regions, for which the interchain
hopping is relevant and irrelevant exist, leading to a confinement-deconfinement crossover in this phase.
A minimum of the charge gap is observed for values of t⊥ close to this crossover. At large t⊥ the region
of the commensurate phase is enhanced, compared to a single chain. At the metal-insulator transition the
Luttinger parameter takes the universal value K∗ρ = 1, in agreement with previous results on special limits
of this model.

PACS. 71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model
systems – 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.)
– 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

Organic conductors Bechgaard salts, which consist of an
array of one-dimensional chains, show various ordered
states such as spin-Peierls state, spin density wave state
and superconducting state at low temperatures [1]. Be-
sides these states of broken symmetry, the normal state
above the transition temperature exhibits a remarkable
electronic state associated with a charge gap. This charge
gap is supposed to originate from the electronic interac-
tions and the commensurate band-filling (1/4 filling) of
the compound [2]. Indeed in one dimension, commensu-
rate systems are Mott insulators. Such an interpretation
of the charge gap has received support from recent optical
experiments [3,4] and transverse conductivity measure-
ments [5]. In addition, since these compounds are quasi-
one-dimensional systems there is a competition between
the one dimensional charge gap, that tends to localize the
electrons, and the interchain hopping tending to make the
system three (two) dimensional. This competition could
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lead to a confinement-deconfinement transition responsi-
ble for the difference of behavior between the TMTTF
and the TMTSF salts [2,6]. Experimentally the confine-
ment (deconfinement) is found in TMTTF (TMTSF) salts
whose interchain hopping is smaller (larger) than the
charge gap [6]. From a theoretical point of view, the transi-
tion should take place when the interchain hopping renor-
malized by interactions is comparable with the single chain
gap [2,4,7]. There is thus still considerable debate on how
such a transition takes place, and what are the relevant
energy scales.

Unfortunately studying an infinite number of coupled
chains is extremely difficult. It is thus worth to investi-
gate these issues on a finite number of coupled chains, i.e.
on ladder systems [8]. By studying explicitly two-coupled
chains with a half-filled band, it has been shown that
the interchain hopping becomes irrelevant, in the sense
of renormalization group, for a charge gap larger than the
interchain hopping [9,10]. It is reasonable to identify this
relevance (irrelevance) of interchain hopping with the de-
confinement (confinement) for an infinite number of chains
since the interchain hopping is renormalized to zero in the
limit of low energy for the irrelevant case. Of course there
are some differences between the simplified ladder system
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and the infinite number of chains: (i) for the ladder the
confinement-deconfinement transition is in fact a crossover
as far as the ground state is concerned [11,12]; (ii) in the
ladder both the relevant and irrelevant cases lead to an
insulating state due to a gap in the total charge excita-
tion. Thus in the ladder to obtain a metallic state, as
observed in the experimental (infinite number of chains)
compounds, it would be necessary to explicitly dope the
system and go away from the commensurate filling. This
could be a way to mimic in this simplified model the small
deviation of the commensurate filling due to warping of
the Fermi surface perpendicular to chain direction [2].

Even if it is known that upon doping the ladder be-
comes metallic and the confined region is suppressed [13],
it is yet very unclear what are the full properties of the sys-
tem upon doping and what are the characteristics of such
a metal-insulator transition. The purpose of the present
paper is to examine these questions in the ladder sys-
tem. We show that the metal-insulator transition in the
ladder can be accurately described by a commensurate-
incommensurate transition, and we determine its charac-
teristics. The commensurate-incommensurate transition is
well known in the classical case for one-dimension [14,15]
or quasi-one-dimensional [16] system. However the quan-
tum case which corresponds to interacting electron sys-
tems, is known only for one-dimensional case [17,18] where
its connections to the Mott transition have been investi-
gated in details [2,19,20]. In the ladder, although both
the half-filled commensurate system (spin ladder) and the
extremely incommensurate case have been widely investi-
gated [21–25], comparatively little has been done on the
metal-insulator transition close to half-filling. The ladder
system with the umklapp scattering has been examined in
the chain basis, where the incommensurate phase shows
no gap in the total charge fluctuation [22]. Studies using
either a mapping on a SO(8) symmetric model [26,27],
onto a hard core boson system [28] or in the large inter-
chain hopping limit [29] show a drastic modification of
the universal properties of the metal-insulator transition
compared to the single-chain case. The universal prop-
erties close to half-filling have been checked numerically
by DMRG [30]. We use here the bosonization technique
and renormalization group to study the full problem as a
function of the doping and the strength of the interchain
hopping. This allows us to obtain the full phase diagram
and in particular the interplay between the confinement-
deconfinement at commensurate filling and the metal-
insulator transition upon doping the ladder.

The present paper is organized as follows. In Section 2,
formulation is given in terms of a bosonized phase Hamil-
tonian and renormalization group equations are derived
by assuming scaling invariance for response functions. In
Section 3, the phase diagram of the commensurate state
and the incommensurate state is calculated by integrat-
ing the renormalization group equations. The charge gap
is also estimated and the critical properties of the transi-
tion are given. In Section 4 a summary and a discussion
of the results can be found. Technical details can be found
in the Appendix.

2 Formulation

2.1 System at half-filling

We consider two-coupled chains of a quarter-filled
Hubbard model with a dimerization given by [31]

H = −
∑
j

∑
σ=↑,↓

∑
l=1,2

[
t+ (−1)jtd

] (
c†j,σ,l cj+1,σ,l + h.c.

)
− 2t⊥

∑
j

∑
σ=↑,↓

(
c†j,σ,1 cj,σ,2 + h.c.

)
+ U

∑
j,l

nj,↑,l nj,↓,l , (1)

where σ (=↑, ↓ or +,−) and l (= 1, 2) denote the spin and
chain index, respectively, and td is the dimerization in the
one-dimensional chains. After the diagonalization of the
td-term, the kinetic term is written as

H0 =
∑
k,σ,l

εk[d†k,σ,ldk,σ,l − u
†
k,σ,luk,σ,l]

−2t⊥
∑
k,σ

[d†k,σ,1dk,σ,2 + h.c.] (2)

−2t⊥
∑
k,σ

[u†k,σ,1uk,σ,2 + h.c.] ,

where εk = −2
√
t2 cos2 ka+ t2d sin2 ka [32] with the lattice

constant a and dk,σ,l (uk,σ,l) is the fermion operator for
the lower (upper) band on the lth chain. Note that the
umklapp scattering is induced by the dimerization, which
has an effect of reducing the quarter-filled band into an
effectively half-filled one. Since we consider only the lower
band, we use half-filling instead of quarter-filling in the
present paper. By diagonalizing the interchain hopping
term with the use of ak,σ,ζ = (−ζdk,σ,1 + dk,σ,2)/

√
2 (ζ =

±), we obtain H0 =
∑
k,σ,ζ ε(k, ζ) a

†
k,σ,ζak,σ,ζ where the

energy dispersion is given by

ε(k, ζ) = −2
√
t2 cos2 ka+ t2d sin2 ka− 2t⊥ζ . (3)

Here we introduce a linear dispersion, ε(k, ζ) → vF(pk −
kFζ) where p is the index of the branch p = +(−) for
the right moving (left moving) electrons and the new
Fermi point is given by kFζ = kF − ζ2t⊥/vF. We have
neglected the t⊥-dependence of the Fermi velocity. After
the bosonization of electrons around the new Fermi point
kFζ , we introduce the phase variables defined by [10]

θν±(x) =
1√
2

∑
q 6=0

πi
qL

e−
α
2 |q|−iqx

∑
k,σ,ζ

f(σ, ζ)

×
(
a†k+q,+,σ,ζak,+,σ,ζ ± a

†
k+q,−,σ,ζak,−,σ,ζ

)
, (4)

where f(σ, ζ) = 1 (for ν = ρ), σ (for ν = σ), ζ (for
ν = C) and σζ (for ν = S), respectively. The phase vari-
ables θρ+ and θσ+ (θC+ and θS+), express fluctuations
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of the total (transverse) charge density and spin density.
They satisfy the boson commutation relation given by
[θν+(x), θν′−(x′)] = iπδν,ν′ sgn(x − x′). In terms of these
phase variables, the field operator, ψp,σ,ζ = L−1/2

∑
k eikx

ak,p,σ,ζ , is given by [10]

ψp,σ,ζ(x) =
1√
2πα

exp (ipkFζx+ iΘp,σ,ζ) exp (iπΞp,σ,ζ) ,

(5)

where α is of the order of the lattice constant and Θp,σ,ζ =
p/(2
√

2)[θρ+ + pθρ− + σ(θσ+ + pθσ−) + ζ(θC+ + pθC−) +
σζ(θS++pθS−)]. The phase factor, πΞp,σ,ζ , in equation (5),
is introduced to ensure the anticommutation relation for
ψp,σ,ζ with different p, σ and ζ.

2.2 System close to half-filling

In order to consider the system, which is slightly away
from half-filling, we consider the following additional term,

Hµ = −µ
∑
j,σ,l

c†j,σ,l cj,σ,l

= −µ
√

2
π

∫
dx∂xθρ+ , (6)

where µ is the chemical potential and µ = 0 corre-
sponds to the half-filling. We apply the transformation√

2θρ+ →
√

2θρ+ + q0x with q0 = 4µKρ/vρ, which leads
to a misfit term q0x in the cosine term expressing the
umklapp scattering. The phase Hamiltonian is written as,

H =
∑

ν=ρ,σ,C,S

vν
4π

∫
dx
[

1
Kν

(∂θν+)2 +Kν (∂θν−)2

]

+
gρ

4π2α2

∫
dx
[
cos
(√

2θC+ −
8t⊥
vF

x

)
+ cos

√
2θC−

]
×
[
cos
√

2θS+ − cos
√

2θS−
]

+
gσ

4π2α2

∫
dx
[
cos
(√

2θC+ −
8t⊥
vF

x

)
− cos

√
2θC−

]
×
[
cos
√

2θS+ + cos
√

2θS−
]

+
gu

2π2α2

∫
dx sin

(√
2θρ+ + q0x

)
×
[
cos
(√

2θC+ −
8t⊥
vF

x

)
+ cos

√
2θC−

− cos
√

2θS+ + cos
√

2θS−

]
+

g⊥
2π2α2

∫
dx cos

√
2θσ+

×
[
cos
(√

2θC+ −
8t⊥
vF

x

)
− cos

√
2θC−

− cos
√

2θS+ − cos
√

2θS−

]
, (7)

where vρ(σ) = vF[1 +(−)U/πvF]1/2, vC(S) = vF, Kρ(σ) =
[1+(−)U/πvF]−1/2, KC(S) = 1, gρ = −gσ = g⊥ = Ua and
a coupling constant for the umklapp scattering is given by
g3 = −Ua(2td/t)/[1 + (td/t)2] [32].

2.3 Renormalization group equations

By utilizing a renormalization group method, we analyze
equation (7) where the nonlinear terms in equation (7) are
rewritten as

1
2π2α2

gνp,ν′p′

∫
dx cos

√
2 θνp cos

√
2 θν′p′ , (8)

where θρ+ = θρ+ + q0x/
√

2, θC+ = θC+ +4
√

2t⊥x/vF and
θνp = θνp otherwise. The coupling constants are given
by gρ+,C± = ∓gρ+,S± = gu, ±gσ+,C± = −gσ+,S± = g⊥,
±gC±,S± = (gρ + gσ)/2 and ±gC±,S∓ = −(gρ − gσ)/2,
where each coupling constant is treated in the renormal-
ization group method. The renormalization group equa-
tions are derived from the response functions, which are
given by 〈Tτ exp[iθρ+(x1, τ1)] exp[−iθρ+(x2, τ2)]〉 [33], By
making use of the scaling of the cutoff (α → α′ = αedl),
we obtain the equations as (Appendix A),

d
dl
t̃⊥ = t̃⊥ −

1
8
G2
ρ+,C+KC F1(8t̃⊥; q0α)

−1
8
(
G2
σ+,C+ +G2

C+,S+ +G2
C+,S−

)
KCJ1(8t̃⊥),

(9)
d
dl
q0α = q0α−G2

ρ+,C+Kρ F1(q0α; 8t̃⊥)

−
(
G2
ρ+,C− +G2

ρ+,S+ +G2
ρ+,S−

)
Kρ J1(q0α),

(10)
d
dl
Kρ = −1

2
K2
ρ

[
G2
ρ+,C+ F0(8t̃⊥; q0α)

+
(
G2
ρ+,C− +G2

ρ+,S+ +G2
ρ+,S−

)
J0(q0α)

]
, (11)

d
dl
Kσ = −1

2
K2
σ

[
G2
σ+,C+ J0(8t̃⊥) +G2

σ+,C−

+G2
σ+,S+ +G2

σ+,S−

]
, (12)

d
dl
KC = −1

2

∑
p=±

[
K2
C J0(8t̃⊥) δp,+ − δp,−

] (
G2
Cp,S+

+G2
Cp,S− +G2

σ+,Cp

)
−1

2

∑
p=±

[
K2
C F0(8t̃⊥; q0α) δp,+

−J0(q0α) δp,−
]
G2
ρ+,Cp , (13)

d
dl
KS = −1

2

∑
p=±

(
K2
S δp,+ − δp,−

) [
G2
ρ+,Sp J0(q0α)

+G2
σ+,Sp +G2

C+,Sp J0(8t̃⊥) +G2
C−,Sp

]
, (14)
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d
dl
Gν+,C± =

(
2−Kν −K±C

)
Gν+,C±

−Gν+,S+GC±,S+ −Gν+,S−GC±,S−, (15)
d
dl
Gν+,S± =

(
2−Kν −K±S

)
Gν+,S±

−Gν+,C+GC+,S± J0(8t̃⊥)
−Gν+,C−GC−,S± , (16)

d
dl
GCp,Sp′ =

(
2−Kp

C −K
p′

S

)
GCp,Sp′

−Gρ+,CpGρ+,Sp′ J0(q0α)
−Gσ+,CpGσ+,Sp′ , (17)

where ν = ρ, σ and p = ±. The quantities F0(x; y) and
F1(x; y) are defined by

F0(x; y) ≡ 1
2

[J0(|x+ y|) + J0(|x− y|)] ,

F1(x; y) ≡ 1
2

[J1(|x+ y|) sgn(x+ y)

+J1(|x− y|) sgn(x− y)] ,

and Jn is the nth order Bessel function. In the above equa-
tions, the l-dependence is not written explicitly. The ini-
tial conditions are given by Kν(0) = Kν , Gνp,ν′p′(0) =
gνp,ν′p′/2πvF, t̃⊥(0) = t⊥/W with W ≡ vFα

−1, and
q0(0) = q0, respectively . The cutoff α can be related
to the lattice constant by α = 2a/π [31], which leads to
W ' πt/

√
2 for small td/t. We take a=1. The renormal-

ization group equations for the velocity vν are discarded
and the velocity vρ and vσ are set to vF.

In the limit of t⊥ → 0 these equations reduce to those
of a single chain given by

d
dl
q0α = q0α− 4G2

u J1(q0α) , (18)

d
dl
Gρ = 2G2

u J0(q0α) , (19)

d
dl
Gu = 2GρGu , (20)

d
dl
Gσ = 2G2

⊥ , (21)

d
dl
G⊥ = 2Gσ G⊥ , (22)

where Kρ = 1 − Gρ and Kσ = 1 − Gσ. In the above
equations, Gu ≡ Gρ+,C± = ∓Gρ+,S±, G⊥ ≡ ±Gσ+,C± =
−Gσ+,S±, (Gρ + Gσ) ≡ ±2GC±,S± and (Gρ − Gσ) ≡
∓2GC±,S∓. It is straightforward to derive equations (18–
22) from the one-dimensional (1D) Hamiltonian given by
(Appendix A)

H1D =
vρ
4π

∫
dx
[

1
Kρ

(∂xθ+)2 +Kρ (∂xθ−)2

]
+
vσ
4π

∫
dx
[

1
Kσ

(∂xφ+)2 +Kσ (∂xφ−)2

]
−µ
π

∫
dx ∂xθ+

0 2 4
0

2

4

l

q 0
(l

) 
α

(4)

(2)

(3)

(1)

Fig. 1. The scaling flows of q0(l)α with fixed µ/t = 0.15 (1),
0.126 (2), 0.125 (3) and 0.1 (4) for U/t = 5, td/t = 0.05 and
t⊥/t = 0.1.

+
gu

2π2α2

∫
dx cos 2θ+

+
g⊥

2π2α2

∫
dx cos 2φ+ , (23)

where θ± and φ± are the phase variables expressing the
charge and spin fluctuations, respectively [34].

3 Commensurate and incommensurate states

We examine the commensurate-incommensurate transi-
tion by solving the renormalization group equations nu-
merically. The dimerization is taken as td/t = 0.05 where
such a choice does not change qualitatively the results as
seen later. The scaling quantity l is related to energy ω
and/or temperature by l = ln(W/ω) = ln(W/T ).

Equation (10) shows that the quantity q0(l) in the ab-
sence of the interaction increases as q0(l) = q0el, while the
increase of q0(l) is suppressed by the presence of Gρ+,C±
and Gρ+,S± coming from the umklapp scattering gu. In
Figure 1, q0(l) are shown with several choices of µ/t for
U/t = 5, td/t = 0.05 and t⊥/t = 0.1. For µ/t = 0.15
(curve (1)), the misfit term q0(l) increases rapidly and be-
comes relevant. In this case, the umklapp scattering can be
neglected since the Bessel functions J0(q0α) and J1(q0α)
in equations (9–17) become small due to large q0α. The
quantity Kρ(l) at the fixed point takes a finite value due
to the relevant q0α, and then the incommensurate state is
obtained. For smaller value of the chemical potential given
by µ/t = 0.1 (curve (4)), the quantity q0(l)α has a max-
imum and reduces to zero with increasing l, showing the
irrelevant q0(l)α. Such a behavior of q0(l)α leads to the
commensurate state, which gives an insulating state due
to the zero value of Kρ(l) in the limit of large l. We note
that the commensurate state corresponds to that of a half-
filled case. The commensurate-incommensurate transition
occurs at the critical value given by µ/t = µc/t(' 0.125)
(curve (3)).
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0 2 4
0

0.5

1

1.5
t ⊥

(l
) 

/ t

l

(a)
(b)

(c)

(d)

Fig. 2. The scaling flows of t⊥(l)/t with fixed t⊥/t = 0.1(a),
0.057 (b), 0.056 (c) and 0.02 (d) for µ/t = 0.1, U/t = 5 and
td/t = 0.05.

3.1 Half-filled case

It is known that a transition from the relevant interchain
hopping to the irrelevant one occurs with increasing t⊥
at half-filling [9,10]. We show that such a result is also
obtained for µ 6= 0, which still leads to the commensurate
state. In Figure 2, the quantity t⊥(l)/t is calculated for
the commensurate state with µ/t = 0.1. With decreas-
ing the interchain hopping as t⊥/t = 0.1 (a), 0.057 (b),
0.056 (c) and 0.02 (d), the hopping changes from a diver-
gent behavior to a convergent one with zero value. One
finds the relevant interchain hopping for large t⊥ (curve
(a)) but irrelevant one for small t⊥ (curve (d)). The be-
havior which separates these two cases is obtained at a
critical value of t⊥ = t⊥,c (curve (c)). For a relevant in-
terchain hopping, one obtains an insulating phase with
spin gap excitations which is called “D-Mott” phase [26]
with “C0S0” phase. The notation CnSm denotes a state
with n massless charge mode and m massless spin mode.
Such a spin gap is also known in the SO(8) Gross-Neveu
model [26], which includes an additional term given by
gρ+,σ+ sin

√
2θρ+ cos

√
2θσ+. For an irrelevant interchain

hopping, one can also expect a state with the spin gap
due to the following fact. The phase has all charge excita-
tions gapped, and because of such generated Heisenberg
exchange (J ' t2⊥/∆ρ) [11] is equivalent to a spin lad-
der. Such a system is known to have all spin excita-
tions gapped. We note that, for two-coupled chains, these
states undergo a crossover since both states exhibit C0S0
phase and there is no clear distinction between these two
states [11,12]. However we may identify the irrelevant (rel-
evant) t⊥ as confinement (deconfinement) since such a re-
sult could be expected for the case of many chains [35]
and higher dimension.

3.2 Commensurate-incommensurate transition

Based on Figures 1 and 2, we examine quantities q and
teff
⊥ , which express effective quantities of q0 and t⊥ in the

presence of the interaction and the chemical potential.
These quantities are estimated from qα = exp[−lq] × 4

–0.2 0 0.2

–0.5

0

0.5

0 0.1 0.2 0.3
0

0.5

1

t ⊥ef
f /t ⊥

µ/t

µ/ t

t⊥/t=

q

0.00
0.05
0.20

Fig. 3. The effective quantity q vs. the chemical potential µ/t
with fixed t⊥/t = 0, 0.05 and 0.2 for U/t = 5 and td/t = 0.05.
The thin dotted line denotes q0. The inset shows teff

⊥ /t⊥, for
t⊥/t = 0.05 (dotted curve) and 0.20 (dashed curve).

0 0.1 0.2
0

0.1

0.2

0.3

µ/t

t ⊥
/t

IC

CI

CII

t ⊥
,c0   /

t

µc
0 /t

Fig. 4. The phase diagram of commensurate (CI and CII)
and incommensurate (IC) states on the plane of µ/t and t⊥/t
for U/t = 5 and td/t = 0.05. The region CI (CII) denotes
“Confined phase” (“D-Mott phase”), i.e., the commensurate
state with the irrelevant (relevant) interchain hopping. The
region IC corresponds to “Luther-Emery liquid”. The arrow
on the horizontal (vertical) axis shows the critical value µ0

c/t
(t0⊥,c/t) separating the respective regions.

with q0(lq)α = 4, and teff
⊥ = t exp[−l1] with t⊥(l1)/t = 1.

One finds that q = q0 and teff
⊥ = t⊥ for the noninteracting

case. In the present analysis, the effective quantity q is
related to the carrier density n by n = q/π (Appendix A).
In Figure 3, the µ-dependence of q is shown with fixed
t⊥/t = 0, 0.05 and 0.2 for U/t = 5 and td/t = 0.05. The
quantity q, which is suppressed by the umklapp scattering,
becomes zero in the commensurate phase. The thin dot-
ted line denotes q (= q0) in the absence of the umklapp
scattering. The critical value µc for the commensurate-
incommensurate transition is not monotonic as a function
of t⊥ since µc for t⊥/t = 0 is larger (smaller) than that
for t⊥/t = 0.05 (0.2). The explicit t⊥-dependence of µc

is evaluated in Figure 4. In the inset of Figure 3, the
effective interchain hopping normalized by t⊥ is shown
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for t⊥/t = 0.05 (dotted curve) and 0.2 (solid curve)
where teff

⊥ /t⊥ is symmetric with respect to µ = 0. For
t⊥/t = 0.05, teff

⊥ /t⊥ becomes zero for small µ/t(<∼ 0.11)
and exhibits the irrelevant interchain hopping while the
interchain hopping for t⊥/t = 0.2 shows always relevant
one.

From the results of Figure 3, we examine the boundary
between the commensurate state (CI and CII) and the in-
commensurate state (IC) and also the boundary between
the relevant interchain hopping and irrelevant one. In Fig-
ure 4, the phase diagram of these states is shown for U/t =
5 and td/t = 0.05. The solid curve denotes the bound-
ary between the incommensurate state and the commen-
surate state. The incommensurate state corresponds to
the metallic state. The commensurate state is the (Mott-)
insulating state where the dashed curve in the commen-
surate state denotes the boundary between the relevant
interchain hopping (“D-Mott phase”) [11] and the irrele-
vant one (“Confined phase”). The critical value shown by
the arrow on the t⊥-axis is given by t0⊥,c/t ' 0.072 [31,
35]. The critical value shown by the arrow on the µ-axis
is given by µ0

c/t ' 0.154, at which the solid curve merges
with the dashed curve. The interchain hopping is always
relevant in the incommensurate phase since the umklapp
scattering becomes irrelevant in the limit of low energy as
seen from equation (7). The incommensurate phase shows
no gap in the total charge fluctuation due to the relevant
µ [22], while the gaps still exist for other fluctuations due
to the relevant t⊥. The incommensurate state corresponds
to a “C1S0” d-wave superconductivity [25] and is called
“Luther-Emery liquid” [29]. The solid curve corresponding
to the critical value µc shows non-monotonic behavior as
a function of t⊥. With increasing t⊥, µc has a minimum at
t⊥/t ' 0.07 and becomes larger than µ0

c . The decrease of
µc for small t⊥/t(<∼ 0.07) originates in the fact that the ef-
fect of the umklapp scattering becomes weakened for finite
t⊥ due to the misfit (8t⊥/vF)x in gu-term of equation (7).

For large t⊥ and small gu (gu is controlled by td which
is small here) we can explain the behavior by a qual-
itative analysis of the renormalization group equations.
The strong interchain hopping between the two interact-
ing chains opens a gap in all sectors except for the total
charge sector. We may define a scale l1 where the cou-
plings in the σ, C, S sectors have reached a value of order
one. This scale will depend on t⊥ and the value of the
bare interaction but not on gu. Up to l1, gu will renor-
malize by some finite multiplicative constant that will not
affect the asymptotic dependence of the charge gap. How-
ever above l1 the scaling dimension of gu is 2−Kρ, instead
of 2− 2Kρ if t⊥ = 0. Indeed cos(

√
2θS+) and cos(

√
2θC−)

acquire a mean value (with opposite signs) so that the
umklapp term reduces to:

gu sin
√

2θρ+
(
〈cos
√

2θC−〉 − 〈cos
√

2θS+〉
)
. (24)

As a first consequence this means that the power law
dependence of the gap for asymptotically small umk-
lapp scattering is enhanced by interchain hopping from
∆1D
ρ ∝ g

1/(2−2Kρ)
u to ∆ρ ∝ g

1/(2−Kρ)
u . The second physi-

0 0.1 0.2 0.3
0

0.1

0.2

t⊥/t

∆ ρ
/t

µ/t= 0

0.1

0.14 0.14

Fig. 5. The t⊥-dependence of the charge gap ∆ρ/t for fixed
µ/t = 0, 0.1 and 0.14 for U/t = 5 and td/t = 0.05.

cal consequence is for the commensurate-incommensurate
transition. In the absence of chemical potential of equa-
tion (6), the operator gu in equation (24) would be relevant
when Kµ=0

ρ < 2. As is standard for the commensurate-
incommensurate transition [2,25], the addition of a chem-
ical potential of equation (6) leads to a universal value
of the Luttinger exponent close to zero doping of K∗ρ =
Kµ=0
ρ /2 = 1. It is also easy to see that the charge ex-

citations connecting two minima of the potential, equa-
tion (24), correspond to a charge +2. We thus recover
quite generally the results that were established in the
various previous limits [27–30].

Next, we estimate the magnitude of the charge gap on
the plane of µ/t and t⊥/t of Figure 4. In a way similar
to the previous calculations in the case for µ = 0 [9,10],
the charge gap ∆ρ is calculated from the renormalization
group flow where ∆ρ/t = W exp[−l∆] and l∆ is defined by
Kρ(l∆) ≡ 1/2. We set ∆ρ = 0 for Kρ(∞) > 1/2. In Fig-
ure 5, the t⊥-dependence of ∆ρ is shown for µ/t = 0, 0.1
and 0.14. When t⊥ increases, the charge gap with µ = 0
decreases and has a minimum at t⊥/t = 0.154. A similar
dependence is found in the t⊥-dependence of µc in Figure 4
where the location for the minimum is the same within the
numerical accuracy. The identification of the charge gap
for the commensurate case ∆ρ(µ = 0) with µc can be ex-
pected for the commensurate-incommensurate transition
on general grounds. Indeed the charge gap is the smallest
energy one must pay to inject an excitation which car-
ries a charge. When the chemical potential reaches the
charge gap, charged excitations are injected in the sys-
tem, the system is incommensurate. The non-monotonic
dependences of ∆ρ on t⊥ indicate a crossover from the
irrelevant interchain hopping to the relevant one with in-
creasing t⊥. For µ/t = 0.1, ∆ρ is suppressed but is still
similar to that of µ = 0. However the t⊥-dependence of
∆ρ for µ/t = 0.14 is qualitatively different from others.
The metallic state with ∆ρ/t = 0 appears in the inter-
val region of 0.028 < t⊥/t < 0.2. This region corresponds
to the incommensurate state in Figure 4. We note that
numerical integration of the renormalization group flow
shows that ∆ρ as a function of µ decreases monotonically
to zero at the commensurate-incommensurate transition,
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0 /t t⊥,c

0  /t

Fig. 6. The U/t-dependence of µ0
c (solid curve) and t0⊥,c (the

dashed curve) for td/t = 0.05, which are shown by the arrows
of the horizontal axis and the vertical axis in Figure 4, respec-
tively. The inset shows the corresponding td-dependence for
U/t = 5.

in agreement with the annihilation of the gap expected for
a commensurate-incommensurate transition.

Finally we examine the U and td dependences of the
critical values, µ0

c and t0⊥,c, which are shown by the arrows
in Figure 4. In Figure 6 the U -dependences of µ0

c and t⊥,c
are shown by the solid curve and the dashed curve respec-
tively for td/t = 0.05. In the inset, the td-dependences
of the corresponding quantities are shown by solid and
dashed curves for U/t = 5. These U and td-dependences
show that µ0

c/t
0
⊥,c ' 2.2 for the present choice of pa-

rameters. Thus a rescaled phase diagram, which is in-
dependent of U and td, can be obtained from Figure 4
by using the rescaled variables µ/µ0

c and t⊥/t
0
⊥,c. Our

renormalization group procedure correctly gives a value
for µ0

c identical, within the scale of Figure 4, with ∆1D
ρ .

The quantity ∆1D
ρ denotes ∆ρ of the single chain where

∆1D
ρ ' W (gu/W )1/(2−2Kρ) for small gu [4]. We note that

the boundary between a relevant t⊥ and an irrelevant t⊥ is
determined more accurately by the competition between
teff,0
⊥ and ∆1D

ρ where teff,0
⊥ denotes the effective interchain

hopping energy for td = µ = 0 [35,36]. The quantity teff,0
⊥

is given analytically by teff,0
⊥ = t⊥(t⊥/t)α0/(1−α0) with

α0 = (Kρ +K−1
ρ +Kσ +K−1

σ − 4)/4 [7,37,38].

4 Summary and discussion

In the present paper, we investigated the properties of
two-coupled chains with interchain electron hopping and
a filling close to half-filling. By using bosonization and a
renormalization group method we obtained the full phase
diagram of the system. There is a metal-insulator transi-
tion for a critical value µc of the chemical potential, de-
scribable by a commensurate-incommensurate phase tran-
sition on the bosonized Hamiltonian. The critical value
µc, shown in Figure 4, exhibits a non-monotonic depen-
dence on the perpendicular hopping t⊥. The minimum of

µc occurs for values of t⊥ close to the ones for which a
confinement deconfinement crossover takes place for the
commensurate case. For large t⊥ the relevance of inter-
chain hopping reinforces the commensurate character of
the system leading to an enhanced commensurability gap.
The crossover line separating the regions of irrelevant and
relevant interchain hopping (confinement-deconfinement
line) merges with the boundary between the commensu-
rate state and the incommensurate state at µ = µ0

c , the
critical chemical potential for a single chain (t⊥ = 0). We
found that the phase diagram of Figure 4 becomes almost
independent of parameters such as interactions and dimer-
ization when expressed in terms of the rescaled variables
µ/µ0

c (t⊥/t0⊥,c). In addition, given the form for the Hamil-
tonian, we could show that at the limit of small doping,
the Luttinger liquid parameter takes the universal value
K∗ρ = 1, thereby confirming the results [26–30] obtained
on specific limits of the model.

Finally let us discuss the interchain exchange interac-
tions in the commensurate confined phase (irrelevant in-
terchain hopping). Even when irrelevant, the interchain
hopping generates two particles and particle hole hop-
ping [7]. Within the present formalism, the two particle
interchain hopping can be taken into account by start-
ing from the chain. The Hamiltonian corresponding to the
umklapp scattering, Hu, in equation (7) is rewritten as

Hu = g1D
u

∑
p,l

∫
dx ψ†p,↑,l ψ−p,↑,l ψ

†
p,↓,l ψ−p,↓,l

+Juz
∑
p

∫
dx
[
ψ†p,↑,1 ψ−p,↑,1 ψ

†
p,↓,2 ψ−p,↓,2 + h.c.

]
+Ju⊥

∑
p

∫
dx
[
ψ†p,↑,1 ψ−p,↓,1 ψ

†
p,↓,2 ψ−p,↑,2 + h.c.

]
+gptu

∑
p

∫
dx
[
ψ†p,↑,1 ψ

†
p,↓,1 ψ−p,↓,2 ψ−p,↑,2 + h.c.

]
,

(25)

where ψp,σ,l = L−1/2
∑
k eikxdk,p,σ,l with l = 1, 2 de-

noting the chain index and p = +(−) corresponding
to the right (left) moving electrons. The coupling con-
stants are given by g1D

u = (gρ+,C+ + gρ+,C− − gρ+,S+ +
gρ+,S−)/4, Juz = (gρ+,C+− gρ+,C−− gρ+,S+− gρ+,S−)/4,
Ju⊥ = −(gρ+,C+ − gρ+,C− + gρ+,S+ + gρ+,S−)/4 and
gptu = (gρ+,C+ + gρ+,C− + gρ+,S+ − gρ+,S−)/4, where g1D

u

and Juz (Ju⊥) denote the intrachain umklapp scattering
and the interchain umklapp exchange, and gptu denotes the
pair tunneling between chains. Other terms in the Hamil-
tonian can be rewritten in a similar form. The initial val-
ues of the interchain exchange and that of pair tunneling
are zero since the initial values of the umklapp scatter-
ing in the renormalization group equations are given by
gρ+,C+ = gρ+,C− = −gρ+,S+ = gρ+,S− = gu. Both of
these interactions are generated by the renormalization.

It would be a interesting problem to investigate, by
taking the higher order terms in the renormalization
group, the consequences of these terms on the full phase
diagram investigated in this paper.
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Appendix A: Renormalization group equations

In this section, we derive the renormalization group equa-
tion for µ.

First, we treat the system with a single chain where
the phase Hamiltonian is given by

H1D =
vρ
4π

∫
dx
[

1
Kρ

(∂xθ+)2 +Kρ (∂xθ−)2

]
+

gu
2π2α2

∫
dx cos (2θ+ + q0x) . (26)

The quantities vρ and Kρ are the same as two-coupled
chains, and [θ+(x), θ−(x′)] = iπsgn(x − x′) [34] and q0 =
(4Kρ/vρ)µ. Here the expectation value of the carrier den-
sity, n, can be evaluated as

n =
2Kρ

πvρ
µ+

1
π

T

L

∫
dx dτ 〈∂xθ+〉 , (27)

where the factor 2Kρ/πvρ in the first term of r.h.s. corre-
sponds to the compressibility in the absence of the umk-
lapp scattering. The second term of equation (27) can be
calculated as follows,∫

dx dτ 〈∂xθ+〉

=
1
Z

Tr
[
∂

∂λ
exp

(
−
∫

dτ H1D + λ

∫
dx dτ ∂xθ+

)∣∣∣∣
λ=0

]
=

4Gu
α2

Kρ

∫
dx dτ x 〈sin (2θ+ + q0x)〉 , (28)

where Z = Tr exp(−
∫

dτ H1D) and Gu = gu/(2πvρ).
In equation (28), the new phase variable θ̃+(= θ+ −
2πKρλx/vρ) has been introduced and rewritten as θ̃+ →
θ+. Then equation (27) leads

n =
1

2π
q0 +

4
πα2

GuKρ
T

L

∫
dx dτ x 〈sin (2θ+ + q0x)〉 ·

(29)

Here it is worthwhile noting that equation (29) is com-
pared with

µ =
πvρ
2Kρ

n− 2vρ
α2

Gu
T

L

∫
dx dτ x 〈sin (2θ+ + 2πnx)〉 ,

(30)

which is obtained by using the Legendre transformation,
i.e., by calculating the value of the chemical potential at
fixed carrier density n [19,33].

After a straightforward calculation of equation (29),
one finds, up to the lowest order of Gu,

n =
1

2π
q0 −

2
πα

G2
uKρ

∫
dr
α

( r
α

)2−4Kρ
J1(q0r). (31)

By assuming that the quantity n is simply scaled as n(l) =
n el [33] with the transform α→ α el, the renormalization
group equation for q0 is obtained as,

d
dl
q0α = q0α− 4G2

uKρ J1(q0α) . (32)

The renormalization group equations for Kρ and Gu can
be obtained in a way similar to reference [19] as

d
dl
Kρ = −2G2

uK
2
ρ J0(q0α) , (33)

d
dl
Gu = (2− 2Kρ)Gu . (34)

By integrating this renormalization group equation, the
effective quantity of q0 can be estimated from qα =
c exp(−lq) with q0(lq)α = c, where c is numerical con-
stant of the order of unity. One finds that the quantity q
can be related to carrier density n by n = q/(2π) from
equation (31).

Next we calculate the case of two-coupled chains. The
expectation value of the carrier density, n, can be evalu-
ated as

n =
4Kρ

πvρ
µ+
√

2
π

T

L

∫
dx dτ 〈∂xθρ+〉 , (35)

where the first term of r.h.s. becomes twice as that in
equation (27), since here we consider two chains. From
a procedure similar to the single chain, equation (29) is
replaced by

n =
1
π
q0 +

4
πα2

Gρ+,C+Kρ
T

L

∫
dx dτ x

×
〈

sin
(√

2θρ+ + q0x
)

cos
(√

2θC+ −
8t⊥
vF

x

)〉
+

4
πα2

Gρ+,C−Kρ
T

L

∫
dx dτ x

×
〈

sin
(√

2θρ+ + q0x
)

cos
√

2θC−
〉

+
4
πα2

Gρ+,S+Kρ
T

L

∫
dx dτ x

×
〈

sin
(√

2θρ+ + q0x
)

cos
√

2θS+

〉
+

4
πα2

Gρ+,S−Kρ
T

L

∫
dx dτ x

×
〈

sin
(√

2θρ+ + q0x
)

cos
√

2θS−
〉
· (36)

The coupling constants that appear in equation (36)
are those including the misfit q0x in the cosine
potential of equation (7). The calculation in the lowest
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order of perturbation yields,

n =
1
π
q0 +

1
πα

G2
ρ+,C+Kρ

×
∫

dr
α

( r
α

)2−2Kρ−2KC
F1 (q0r; 8t⊥r/vF)

+
1
πα

G2
ρ+,C−Kρ

∫
dr
α

( r
α

)2−2Kρ−2/KC
J1(q0r)

+
1
πα

G2
ρ+,S+ Kρ

∫
dr
α

( r
α

)2−2Kρ−2KS
J1(q0r)

+
1
πα

G2
ρ+,S−Kρ

∫
dr
α

( r
α

)2−2Kρ−2/KS
J1(q0r) ,

(37)

where F1(x; y) ≡ [J1(|x+y|) sgn(x+y)+J1(|x−y|) sgn(x−
y)]/2. The infinitesimal transform of the cutoff α→ α′ =
α edl in equation (37) leads the renormalization equation,
equation (10). The renormalization group equation for t⊥,
equation (9), can be obtained in a similar way. The equa-
tions for the other coupling constants, equations (11–17)
are also obtained in a way similar to reference [10].
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Rev. Lett. 77, 398 (1996).
4. A. Schwartz, M. Dressel, G. Grüner, V. Vescoli, L.
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Sarkey, L.K. Montgomery, Science 281, 1181 (1998).
7. C. Bourbonnais, in Strongly Interacting Fermions and

High Tc Superconductivity, edited by B. Doucot, J.
Zinn-Justin (Elsevier, Amsterdam, 1995), p. 307.

8. E. Dagotto, T.M. Rice, Science 271, 5249 (1996).
9. Y. Suzumura, M. Tsuchiizu, G. Grüner, Phys. Rev. B 57,
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